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Abstract—This paper introduces an innovative method for gen-
erating humanoid robot motion data using Functional Principal
Component Analysis (FPCA). With increasing demand for robots
to replace humans, there is a growing interest in humanoid
robots. However, controlling complex humanoid robots, especially
bipedal robots, remains challenging. Acquiring motion data for
these robots is time-consuming and costly due to their high-
dimensional complexity. Therefore, this paper proposes a solution
for synthesis considering multiple latent spaces. By considering
the intersection of two different spaces, synthesis while preserving
the characteristics of the original motion is achieved. These
innovations aim to establish a theoretical foundation for more
efficient generation of motion data for humanoid robots.

I. INTRODUCTION

Human motion presents rich exploration opportunities, es-
pecially in robotics. While humanoid robots aim for human-
like appearances, many lack bipedal legs, relying on wheels
instead. They also assist in evaluating exoskeletons for labor-
intensive professions [1], [2]. Ongoing research explores de-
ploying humanoid robots directly in hazardous or physically
demanding tasks, marking a significant shift in robotics [3],
[4].

Controlling humanoid robots is challenging due to fac-
tors like their height, freedom of movement, and balance
issues. Various methods simplify their motion control, such
as Choreonoid software and motion retargeting from human
movements [5]–[11]. Direct Optimal Control (DOC) [12]–[16]
and Inverse Optimal Control (IOC) help generate human-like
movements [17]–[26], but current methods are labor-intensive
and time-consuming. Streamlining these processes is necessary
for future advancements in humanoid robot motion control.

To address these challenges, we introduced a sophisticated
data synthesis methodology leveraging Functional Principal
Component Analysis (FPCA) [27], [28]. FPCA condenses
complex datasets into a lower-dimensional latent space, pre-
serving fundamental motion characteristics for motion sim-
ilarity assessment and efficient data synthesis. Other data
reduction methods like autoencoders and reinforcement learn-
ing also exist, but they require learning processes and risk
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over-learning, unlike FPCA and PCA, which quickly reduce
dimensionality without supervision.

In this study, FPC scores from the FPC space are treated as
a single dataset representing motion characteristics, allowing
for motion synthesis operations. While humanoid robots have
previously performed motions using synthesized data [29], this
thesis further explores the potential of motion synthesis using
FPC scores from various perspectives.

II. MOTION FEATURE EXTRACTION USING FPCA

In this chapter, we explain the method of transforming
motion data Q into values in a low-dimensional space using
FPCA. The motion data Q consists of trajectories of several
variables, including joint angles q, angular velocities q̇, and
angular accelerations q̈ of the robot.

A. Variables and B-Spline Functions for Motion Feature Ex-
traction

A combination of B-spline functional bases is utilized to
model the trajectory of joint angles, enhancing robustness
against noise and reducing dimensionality. The functionally
represented data is then utilized in FPCA as discussed in
Section II-B. The variables q, q̇, and q̈ are represented as
follows:qq̇

q̈

 =

NT∑
t=1

NB∑
i=1

bi,tḃi,t
b̈i,t

 ·
NB∑
i=1

wqi ⇔

qq̇
q̈

 =

Bq

Ḃq

B̈q

Wq (1)

where, the weight vector wqi ∈ RNJ represents the weights,
while bi,t, ḃi,t, and b̈i,t ∈ R are B-spline basis functions,
with NB denoting their number. Matrices Bq , Ḃq , and
B̈q ∈ RNT×NB comprise these basis functions, with Ḃq / B̈q

representing their first / second-order derivatives. The weight
matrix Wq ∈ RNB×NJ captures the spline functions’ weights.
Equation (1) parameterizes trajectories q, q̇, and q̈ using
coefficient parameters Wq , effectively consolidating them into
Wq , leading to significant data reduction (Q → Wq).

In the following subsection, we will further elaborate on
methods to reduce the dimensionality of Wq .

B. Conversion of Dataset into Low-Dimensional Latent Space
Scores

Before delving into the main topic, it’s crucial to discuss
the vector w ∈ RNJ×NB , obtained by concatenating the
elements of the parameter matrices Wq into a single column.
This discussion holds practical significance beyond theoretical



TABLE I
RMSE BETWEEN ORIGINAL ARM JOINT ANGLE TRAJECTORIES AND

THOSE SYNTHESIZED USING DIFFERENT METHODS FOR COMBINING LEFT
AND RIGHT ARM MOTIONS.

Synthesis method
Combination Intersection [rad] Linear [rad]

Right Left Right Left Right Left
Swing Swing 0.2974 0.3947 0.2482 0.3789
Swing Stretch 0.3101 0.3869 0.3450 0.3943
Stretch Swing 0.4008 0.3697 0.4036 0.4099
Stretch Stretch 0.3838 0.3782 0.3920 0.3006

abstraction, as w encapsulates the essence of motion data Q
and forms the basis for applying the FPCA methodology.

Upon applying FPCA to the motion dataset, we obtain FPC
scores. Given a motion dataset comprising k motion data
Qi(1 ≤ i ≤ k) and their corresponding wi values, applying
FPCA to the dataset wdata = [w1, . . . ,wk] constructs the FPC
space composed of FPC scores X = [x1, . . . ,xk]. Each FPC
score xi can be expressed as follows:

xi = M(wi −w) ⇔ wi = M−1xi +w (2)

where, M ∈ RNorigin×Norigin(Norigin = NJ × NB) is the
conversion matrix calculated from FPCA, and w refers to
the mean value of the weights wi depending on the given
dataset. Based on (2), generating the motion data Qi from
FPC scores can be readily achieved from the FPC score xi.
These scores contain the characteristics of the original data,
and by appropriately combining them, it becomes possible to
synthesize data while preserving the features of the original
data [30].

III. SYNTHESIS OF DIVERSE MOTIONS BETWEEN TWO
DIFFERENT MOTION LATENT SPACES

The FPC space allows blending motions via local and
global spaces, where local spaces represent specific body
parts’ motions, and global spaces encompass the entire body’s
motion, influencing blending feasibility. Interpolating motions
within the same local space yields blended motions, such as
combining left and right lunge motions to generate new squat
motions [31]. However, blending motions from different local
spaces necessitates considering the global space. The concept
of the ”intersection point” bridges these spaces.

To comprehend the mathematical interpretation of motion
synthesis with local and global spaces, consider the following.
First, FPC scores in both local and global spaces are defined
as follows:

MG(w −wG) = xG (3){
w = M−1

L1 xL1 +wL1

w = M−1
L2 xL2 +wL2

(4)

Where, the subscript G is utilized for global space values: the
subscript L1 is utilized for the 1st motion data group, and L2

is utilized for the 2nd motion data group.
The relationship between the FPC scores in the three spaces

illuminates the motion synthesis process: two local spaces
and the global space. Local values such as wL1, wL2, ML1,

and ML2 are transformed into global ones using (3) and (4)
through the following formula:{

xG = SG/L1xL1 + xG/L1

xG = SG/L2xL2 + xG/L2

(5)

where, {
SG/L1 ≜ MGM

−1
L1

SG/L2 ≜ MGM
−1
L2

(6){
xG/L1 ≜ MG(wL1 −wG)

xG/L2 ≜ MG(wL2 −wG)
(7)

Using these values enables to convert each local FPC scores
into the corresponding global FPC score: x(∗)

G .
The solution to the simultaneous (5) yields the synthesized

data, considering the original motion characteristics, repre-
sented by the intersection point xG. Ultimately, the motion
data Q is derived from x

(∗)
G using (1) and (2).

IV. SYNTHESIZING UPPER BODY MOTIONS IN FPC SPACE

The proposed method has already synthesized motions in-
volving both upper and lower body movements [30]. The study
focused on synthesizing upper body motions by combining
two types of prepared data: one involving swinging the arms
forward (Swing) and the other involving extending the arms
sideways from the body (Stretch). These movements allowed
independent operation of the left and right arms. Joint angle
data from both arms were used as the composite target, while
data from only one arm were extracted for FPCA, resulting in
four types of local spaces. Motion synthesis was performed by
combining two of these local spaces. The study compared this
method with linear blending and evaluated the preservation of
original motion characteristics using root mean square error
(RMSE) between original and synthesized motions.

The results are presented in Table I. For combinations such
as Swing + Stretch, where different motions are performed
by the left and right arms, using Intersection for synthesis
tends to better preserve the original data’s characteristics
compared to linear blending, as indicated by the RMSE values.
Conversely, for combinations like Swing + Swing, where both
arms perform the same motion, linear blending shows lower
RMSE values.

V. CONCLUSION

This paper discussed the synthesis of humanoid robot
motion data using Functional Principal Component Analysis
(FPCA) and the FPC space. The methodology involves con-
sidering multiple FPC spaces and finding their intersections.
While the proposed method tends to better preserve the
original motion’s characteristics compared to linear blending
in some combinations, this is not universally observed. To
improve the synthesis process, further investigation into the
reasons for these discrepancies is necessary. Future discussions
will explore the possibility of calculating intersections of three
or more spaces and creating finer-grained local spaces by
segmenting body parts into smaller units.
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