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Fig. 1: Illustration of (a) baseline method, (b) spatial motion retargeting (SMR), and (c) temporal motion retargeting (TMR).
In our spatio-temporal motion retargeting (STMR) approach, we sequentially conduct SMR and TMR to refine a target motion
to address both the kinematic and dynamic properties of the target robotic system.

I. SPATIO-TEMPORAL MOTION RETARGETING

In this paper, we introduce a motion retargeting approach
for quadruped robots, which aims to create motion controllers
that imitate the agile movements of animals. Our motion re-
targeting method, namely spatio-temporal motion retargeting
(STMR), effectively addresses the morphological differences
between the source and target systems while guaranteeing the
retargeted motion is dynamically feasible on the target system.

This method sequentially deforms motions in both spatial
and temporal dimensions as described in the Figure 1. The
resulting retargeted motion facilitates the training of a control
policy through reinforcement learning (RL), achieving high
accuracy in motion tracking by accounting for the kinematic
and dynamic constraints of the target system.

A. Notation

We represent the generalized coordinate of the robot with
q and its time derivative with ¤q. The state of the robot is
defined as x = [q, ¤q]𝑇 . We specify 𝑁 keypoints of the robot to
track its motion, whose position is given by p ∈ R𝑁×3. These
keypoints, more specifically, include four each of hips, thighs,
knees, and feet, totaling 𝑁 = 16. Furthermore, keypoints
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are defined in each frame, with the position of the 𝑗 th
keypoint in the 𝑖th frame expressed as p𝑖

𝑗
for 𝑗 ∈ {1, 2, ...𝑁},

𝑖 ∈ {0, 1, ...𝑇} where 𝑇 denotes the total number of frames.

B. Problem Formulation

As keypoint trajectory p0:𝑇
1:𝑁 is acquired from an arbitrary

quadruped system, it can be physically infeasible for the target
robot to track. Additionally, the keypoint trajectory p0:𝑇

1:𝑁 may
not include the global base movement when the motion is
recorded with a hand-held camera. Therefore, STMR seeks to
recreate physically feasible whole-body motion by optimizing
across both spatial and temporal dimensions.

The objective of the STMR (Spatio-Temporal Motion Retar-
geting) problem is to establish a mapping ST𝜶 : p0:𝑇

1:𝑁 → X∗,
aiming to produce robot states X∗ that are both kinematically
and dynamically feasible. We approach this as a numerical
optimization problem, where, given the discrete dynamics
𝑓 , we aim to find the optimal temporal parameters 𝜶∗ and
control sequence U∗, as specified in Equation (1). The search
incorporates additional constraints, notably foot constraints 𝑔,
to ensure the motion remains kinematically feasible.

min
U,𝜶∈I

J s.t. 𝑔(X) = 0, x𝑖+1 = 𝑓 (x𝑖 , u𝑖), (1)

where

J =

𝑇−1∑︁
𝑖=0

𝑙 (x𝑖 , u𝑖 , ST𝑖
𝜶 (p0:𝑇

1:𝑁 )) + 𝑙 𝑓 (x𝑇 , ST𝑇
𝜶 (p0:𝑇

1:𝑁 )).
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Fig. 2: Deployment of control policy in real-world

It is worth noting that the STMR problem involves ac-
tively deforming the target motion rather than mere tracking.
Therefore, the motion retargeting function ST𝜶 (·) should be
constructed in a way that its resulting motion does not lose
the semantic meaning of the original motion. Additionally,
due to its nonconvex nature, the standard convex optimization
methodologies can not be applied. To address this, we divide
this problem into two subproblems: spatial motion retargeting
(SMR) and temporal motion retargeting (TMR).

C. Two-stage optimization

Due to the challenges mentioned earlier, we decompose the
STMR problem as ST𝜶 (·) = T𝜶 ◦ S(·) where S(·) represents
SMR, and T𝜶 (·) represents TMR process. Adopting this
approach, we find these two mappings sequentially through
two-stage optimization.

The SMR maps keypoint trajectory p0:𝑇
1:𝑁 to kinematically

feasible robot states, denoted as X̄ such that S : p0:𝑇
1:𝑁 → X̄. In

contrast to the baseline method, namely, unit vector method [1]
illustrated in Figure 1a, the generated motion is free of
foot sliding, adjusts base movement and enforces original
contact timing as shown in Figure 1b. Since we focus on
kinematic motion, the dynamics 𝑓 is dropped, and the state-
only objective function denoted as Jx is minimized under foot
constraints 𝑔, as shown in Equation (2).

X̄ = arg min
X

Jx s.t. 𝑔(X) = 0 (2)

Following this, a temporal retargeting function, denoted as
T𝜶 (·), obtains dynamically feasible states X∗ such that T𝜶 :
X̄ → X∗. In particular, T𝜶 performs temporal deformation by
dividing the motion into 𝑆 segments with an equal time step
size and scaling each with temporal parameters 𝜶 that lies in
interval I = [𝜶min,𝜶max] for 𝜶min,𝜶max ∈ R𝑆

>0. In detail, TMR
solves the optimization problem from Equation (1) where the
objective function is written as Equation (3).

J =

𝑇−1∑︁
𝑖=0

𝑙 (x𝑖 , u𝑖 ,T𝑖
𝜶 (X̄)) + 𝑙 𝑓 (x𝑇 ,T𝑇

𝜶 (X̄)) (3)

The TMR problem encompasses a finite-horizon optimal
control problem (OCP), which aims to find the optimal control
sequence to track the given reference states under dynamics.

Motion Robot DeepMimic STMR (ours)

Hopturn
Go1 6.5(1.2) 2.1(0.2)
A1 8.2(1.5) 1.6(0.2)

Aliengo 5.3(1.9) 1.7(0.2)

TABLE I: L1 distance with Dynamic time warping (DTW) [4]
normalized by total keypoint trajectory length (%). The values in
parentheses indicate the standard deviation.

For example, by ignoring the temporal parameter 𝜶, the
TMR problem reduces to OCP with the goal of tracking the
reference states X̄. This property allows us to utilize model-
based optimal control (MBOC) [2] as a subprocess of TMR
to solve for control sequence U∗, whereas temporal parameter
𝜶 is searched using Bayesian optimization with Expected
Improvement [3] as shown in Figure 1c.

II. PRELIMINARY RESULTS

We validated the effectiveness of our proposed STMR
method through a series of both simulation and real-world
experiments. For the experiments, we trained control policies
using residual learning, which utilizes the motion refined
through the STMR process to serve as the base control
signal while the control policy provides a feedback control
mechanism.

A. Simulational Experiment
In simulation experiments, we evaluated the motion-tracking

precision with the baseline method by Peng et al. [5]. We used
three distinctive robot models, Unitree Go1, A1, and Aliengo,
and measured the normalized motion tracking precision using
Dynamic time warping (DTW) [4] divided by total keypoint
trajectory length. As summarized in Table I, our method shows
enhanced tracking precision by a considerable margin.

B. Real-world Experiment
We showed that the learned policy can effectively produce

highly dynamic motion on robot hardware. To bridge the sim-
to-real gaps, we randomize controller gains, mass, inertia,
friction, and floor restitution and randomly push the robot
to change torso velocity during the training. Utilizing our
policies, two robots, Go1 and Aliengo, successfully executed
a highly dynamic hop-turn motion as depicted in Figure 2.
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