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Abstract— The problem of designing complex robotic hard-
ware using numerical optimization got significant attention in
recent years. However, ensuring robustness, which is essen-
tial to guarantee the practical applicability of the designed
solutions, remains an ongoing challenge in co-design. This
problem becomes particularly pronounced when dealing with
inherently unstable systems, such as legged robots. In this
extended abstract, we want to reason about these challenges and
investigate possible solutions to tackle such a problem based on
current trends in the community.

Fig. 1: Tlustration of the deterministic chaos arising from a
forward simulation with contacts: several different trajecto-
ries are possible for slight changes in the model parameters.
Co-design for robustness needs to reason about how hard-
ware selection impacts this evolution.

I. ROBOT CONTROL ROBUSTNESS
AS MORPHOLOGICAL COMPUTATION

Morphological computation [1] is a concept borrowed
from biology that suggests offloading certain computational
tasks to the physical body rather than relying solely on on-
board computational resources. This idea has gained traction
in robotics as a means to achieve more robust and efficient
control systems. For instance, for a legged robot stepping on
an uneven surface, we would like to provide the same signals
that we would do in normal conditions and let its mechanical
structure take care of the unplanned perturbations. In the
context of robot control, morphological computation hence
involves designing robots with physical features that can
exploit the dynamics of the system to simplify control tasks
and enhance performance. Co-design, when coupled with the
principles of morphological computation, offers a holistic
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approach to developing robots with these capabilities. By
integrating the design of the robot’s body and its control
logic, co-design can be used to achieve robust and adaptive
behavior in complex and dynamic environments.

II. ROBUSTNESS IN CO-DESIGN

Most of the prior research in the co-design primarily
focused on optimality, as outlined in previous work [2-5].
However, factors such as unmodelled dynamics, noise, de-
lays, saturation, or actuator dynamics can prevent the system
from effectively rejecting external perturbations. Thus, while
optimality still remains a fundamental criterion, robustness
emerges as a complementary aspect that must be addressed
to deploy these solutions effectively in the real world. The
co-design of a legged system, which can robustly operate
also in unplanned scenarios, is still an open problem. One
of the directions in our current work is the selection of
trajectories and designs that require the least control correc-
tion when replayed on real hardware. To achieve this goal,
several strategies have been proposed in the past, including
stochastic optimization [6, 7] and data-driven approaches [8].
In the last work, a robust bi-level scheme was proposed, in-
corporating additional simulations to enhance the robustness
of the co-design process. Such a technique was used to select
the optimal hardware parameters for robustness, namely
those resulting in a trajectory and local controller that could
better perform in simulation with unplanned disturbances.
The main drawbacks of the approach were scalability, and
the selection of a locally optimal controller which was not
explicitly optimized for robustness. In another work, [9, 10],
in order to handle robustness, the maximization of the region
of attraction of a stabilizing controller has been investigated
for simple underactuated systems. Finally, concerning para-
metric optimization, in [11] a method has been outlined to
select optimal trajectories. This work achieved the selection
of robust references for UAVs thanks to sensitivity analysis.
The differential flatness property of these robotics systems
shifts the problem of robust control to robust trajectory
selection. On the other hand, for legged robots, with more
DoFs and switching contact dynamics, the applicability of
such a method must be carefully reconsidered.

III. REASONING ABOUT ROBUSTNESS
IN CONTACT-RICH PROBLEMS

To achieve similar results to [11] in legged-robotics, but
several challenges arise given that the problem is inherently
non-smooth. Questions that remain still open and have to be
investigated are:



« What is the right metric to define and optimize the
robustness of a design?

« Are sensitivies a good starting point or should statistical-
based sampling be used instead?

« How to obtain meaningful gradients through the simu-
lation, which features a non-differentiable dynamic?

« Can a method compute these sensitivities efficiently and
be scalable to the dimensionality of legged-robots?

o Can the non-linearity of the system with contacts be
properly modelled and handled?

o In the case of sampling-based methods, can we compute
the robustness metrics efficiently?

To reason about these open problems, we are investigating
different ideas to understand what is the most suitable
method to include a robustness metric in co-design consid-
ering the robot’s mechanical design and its controller. The
open research investigations are related to:

a) Leveraging differentiable simulation: Parametric
gradients could be obtained via differentiable simulation [12,
13]. However, the gradients obtained for loco-manipulation
problems are notoriously ill-conditioned as they rely on
relazations and are obtained through a stiff dynamic [14]. As
a possible remedy to this, incorporating smooth differentiable
formulation may help to recover better-conditioned jacobians
[15]. However, also in this case, several complications arise
and need to be considered carefully, as noted in [16],
gradients are not always sufficient and in such cases black
box methods may be used to obtain smoothed proxies for
loss functions. The authors acknowledge several potential
issues in computing gradients through dynamical systems,
such as numerical precision, memory requirements, and flat
loss landscapes (typical in loco-manipuation problems).

b) Leveraging parallelization: Another solution hence
would be to use massive parallelizable simulation to better
approximate gradients through sampling, similar to what has
been currently a successful trend for simulation in reinforce-
ment learning [17]. Moreover the use of parallelization also
opens the road to the use of hybrid methods, combining
analyic and sampled gradients.

¢) Multimodality, singularity and bifurcation points.:
Contact-rich problems show the property of deterministic
chaos. Depending on the initial conditions, very different
outcomes may arise. The selection of a method and a metric
that can overcome this difficulty may be tailored for the
practical co-design optimization. For instance, if the final
state of a perturbed simulation becomes multimodal, then
appropriate mathematical tools would be necessary to tackle
the stochasticity into account as distributions. In our current
developements this problem is being carefully treated.

IV. PERSPECTIVE WORK

Integrating morphological computation principles in robot
design offers a promising pathway for advancing robotics to-
ward enhanced robustness and adaptability. Optimizing both
the robot’s physical design and its control algorithms will be
fundamental to achieve reliable performance across various
environments. However, navigating through the challenges of

this co-design problem and selecting the most suited robust-
ness formulation will be crucial as explained in the previous
section. The problem of contacts is currently a big obstacle
to overcome. Moreover the selection of metrics related to
robustness has been quite overlooked in the past, also due
to the non-linear nature of the problem. The synthesis of a
robust design is hence still an open problem, which has to be
tackled to improve the deployability of robots. However the
current advancements in trajectory optimization and learning
pave the way for a more reliable investigation of the problem
in the future.
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