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Abstract—Soft robots can execute tasks with safer interactions.
However, controllers that can exploit the systems’ capabilities
are still missing. Differential dynamic programming (DDP) has
emerged as a promising tool for achieving highly dynamic tasks.
But most of the literature deals with applying DDP to articulated
robots by using numerical differentiation and fully actuated
robots. We propose an efficient DDP-based algorithm for trajec-
tory optimization of articulated soft robots that can optimize the
state trajectory, input torques, and stiffness profile. The proposed
method can plan and control underactuated compliant robots,
with varying degrees of underactuation, effectively.

I. INTRODUCTION

Across many sectors such as the healthcare industry, we
require robots that can actively interact with humans in
unstructured environments. To enable safe interactions and
increase energy efficiency, we often include soft elements in
the robot structure [1] [2], [3].

A series elastic actuator (SEA) has a linear spring between
the actuator and the load [4]. Instead, a variable stiffness
actuator (VSA) integrates an elastic element that can be
adjusted mechanically. These actuators provide many potential
advantages but also increase the control complexity [5].

Differential dynamic programming (DDP) is an optimal
control method that offers fast computation and can be em-
ployed in systems with high degrees of freedom and multi-
contact setups [6], [7].

We propose an efficient optimal control method for ar-
ticulated soft robots based on the feasibility-driven DDP
(FDDP)/Box-FDDP algorithm. It boils down to three technical
contributions [3]: (i) an efficient approach to compute the
forward dynamics and its analytical derivatives for robots
with SEAs, VSAs, and under-actuated compliant arms, (ii)
empirical evidence of the benefits of analytical derivatives in
terms of convergence rate and computation time, and (iii) a
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state-feedback controller that improves tracking performance
in soft robots.

Our approach boosts computational performance and im-
proves numerical accuracy compared to numerical differentia-
tion. The state-feedback controller is validated in experimental
trials on systems with varying degrees of freedom. We provide
the code to be publicly accessible. More details can be found
here [3] 1.

II. PROBLEM DEFINITION

We report a model for soft articulated robotic arms, i.e.,

M(q)q̈+C(q, q̇)q̇+G(q)+K(q−Sθθθ) = 0, (1)

Bθ̈θθ +S⊤K(Sθθθ −q)− τττ = 0, (2)

where, M(q) ∈ Rn×n is the inertia matrix, C(q, q̇) ∈ Rn×n

contains the Coriolis terms, and G(q)∈Rn is the gravity term,
B ∈Rm×m is the motor inertia, U(q,θθθ) is the elastic potential,
τττ ∈ Rm is the torque, and S ∈ Rn×m is the selection matrix.

A. Optimal control formulation

We formulate a discrete-time optimal control problem for
soft robots as follows:

min
(qs,q̇s,θθθ s,θ̇θθ s),(τττs)

ℓN(qN , q̇N ,θθθ N , θ̇θθ N)

+
N−1

∑
k=0

∫ tk+1

tk
ℓk(qk, q̇k,θθθ k, θ̇θθ k,τττk)dt

s.t. [qk+1, q̇k+1,θθθ k+1, θ̇θθ k+1] = ψψψ(q̇k, q̈k, θ̇θθ k, θ̈θθ k),

[q̈k, θ̈θθ k] = FD(qk, q̇k,θθθ k, θ̇θθ k,τττk),

[qk,θθθ k] ∈ Q, [q̇k, θ̇θθ k] ∈ V ,τττk ∈ U ,

,

where, qk, q̇k, θθθ k, θ̇θθ k and τττk describe the configuration point,
generalized velocity, motor-side angle, motor-side velocity,
joint torque commands of the system at time-step (node) k; ℓN
is the terminal cost function; ℓk is the running cost function;
ψψψ(·) defines the integrator function; FD(·) represents the for-
ward dynamics of the soft robot; Q represents the admissible
state space; V describes the admissible velocity space and U
defines the allowed control. it is instrumental for the method
to define x is the state vector (x ≜ [q⊤, q̇⊤,θθθ⊤, θ̇θθ

⊤
]⊤), u is

the control vector and f(x,u) represents the dynamics of the
system.

1https://github.com/michelepierallini/aslr to
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III. PROBLEM SOLUTION

We solve the optimal control problem described in Section
II-A using the Box-FDDP algorithm.

DDP solves optimal control problems by breaking down
the original problem into smaller sub-problems. So instead of
finding the entire trajectory at once, it recursively solves the
Bellman optimal equation backward in time.

The Bellman relation is stated as

V (xk) = min
uk

ℓk(xk,uk)+Vk+1(f(xk,uk)), (3)

where, V (xk) is the value function at the node k. FDDP uses a
quadratic approximation of the differential change in (3), i.e.,
Q. and it is divided into two parts.

1) Backward Pass: In the backward pass, the search direc-
tion is computed by recursively solving

δuk =argmin
δuk

Q(δxk,δuk) = k̂+ K̂δxk,

s.t. u ≤ uk +δuk ≤ u,
(4)

where, k̂ = −Q̂−1
uuk

Quk is the feed-forward term and K̂ =

−Q̂−1
uuk

Quxk is the feedback term at the node k, and Q̂uuk is the
control Hessian of the free subspace. Using the optimal δuk,
the gradient and Hessian of the Value function are updated.

2) Forward Pass: Once the search direction is obtained in
(4), then the step size α is chosen based on an Armijo-based
line search routine. The control and state trajectory are updated
using this step size

ûk = uk +αk̂+ K̂(x̂k −xk), (5)
x̂k+1 = fk(x̂k, ûk)− (1−α)f̄k−1, (6)

where, {x̂k, ûk} are the state and control vectors. In problems
without control bounds, the algorithm reduces to FDDP [6].
The interested reader is referred to [3], [6], [8] for more details
about the algorithm.

A. Dynamics for soft robots
The forward dynamics computation in (1)-(2) can be done

differentiating τττ lll and τττm

τττ l ≜−C(q, q̇)−G(q)−K(q−Sθθθ), (7)

τττm ≜−S⊤K(Sθθθ −q)+ τττ. (8)

An explicit inversion of the KKT matrix is avoided in the
forward pass by inverting the matrix analytically:[

δ q̈
δ θ̈θθ

]
=−

[
M 0
0 B

]−1([ ∂τττ l
∂x

∂τττm
∂x

]
δx+

[
∂τττ l
∂u

∂τττm
∂u

]
δu

)
. (9)

IV. VALIDATION

We employ a 2DoF compliant system where the first joint is
actuated by a SEA and the second elastic joint is punctuated.

The motors and the links of theactuator both include
AS5045 12 bit magnetic encoders. The actuator’s elastic
torque τ and nonlinear stiffness function σ satisfy the
following equation τ = 2β coshαθs sinhα(q−θe) and σ =
2αβ cosh(αθs)coshα(q−θe) where, α = 6.7328 rad−2, β =
0.0222 Nm, θe is the motor equilibrium position, θs tunes the
desired motor stiffness and q is the link-side position.

a) Underactuated 2DoF compliant arm: In the case
where the first joint is actuated by a SEA, the stiffness
constant σ = 5 Nm/rad and the time horizon is T = 3 s. The
weights corresponding to control regularization is 10−1, state
regularization is 10−2, ℓk is 10−2 and the goal-tracking cost
is 10−1. The stiffness of the second link is 2 Nm/rad.

Fig. 2 shows the simulation and experimental results of
the swing-up task performed by the 2DoF underactuated
compliant arm with a SEA in the first joint. This includes
the optimal trajectory (Fig. 2(a)) and the input sequence (Fig.
2(b)). Fig. 2(c) illustrates the link positions of both the joints
obtained from the experiments. Snapshots of the experiments
are depicted in Fig. 1. The RMS error for joint 1 in the case of
pure feed-forward control was 0.3908 rad and in the case of
feedforward plus feedback control was 0.3734 rad. Similarly,
RMS for the pure feed-forward case was 0.1607 rad and for
feedforward plus feedback control was 0.1571 rad.

Fig. 1. Photo-sequence of the swing-up task for 2DoF underactuated
compliant arm with a SEA in the first joint.
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Fig. 2. Swing-up task for the 2DoF underactuated compliant robot with a
SEA in the first joint. We compare the desired and the link positions using
both the pure feed-forward (FF) and the feedback plus feed-forward (FF+FB)
cases, which shows better performance in the latter.

V. CONCLUSION

In this work, we proposed an efficient optimal control
formulation for soft robots based on the Box-FDDP/FDDP
algorithms. We proposed an efficient way to compute the
dynamics and analytical derivatives. Finally, the approach’s
effectiveness is tested on real hardware varying tasks. Further,
an MPC solution based on the proposed framework is a natural
extension of this work.
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