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Model Predictive Control (MPC) has become popular
for online robot decision-making. It has shown compelling
results with all kinds of robots ranging from industrial
manipulators [1], quadrupeds [2]–[4] to humanoids [5], [6].
In robotics, Differential Dynamic Programming (DDP) [7]
is a popular choice to solve OCPs because it exploits the
problem’s structure well. This advantage has led to a bustling
algorithmic development over the past two decades [8]–[20].
In this work, we argue that this effervescence has hidden
the fact that sparsity can be equally exploited by standard
nonlinear optimization. Indeed, one might naively ask: why
not use well-established optimization algorithms [21]? Is
there anything special in MPC that cannot be tackled by,
for example, an efficient implementation of Sequential
Quadratic Programming (SQP) [22]? In this work, we
show that special implementations of numerical methods de-
veloped by the optimization-based control community [23]–
[26] are, in fact, sufficient to achieve state-of-the-art MPC
on real robots.

Mayne first introduced DDP [7] as an efficient algorithm
to solve nonlinear OCPs by iteratively applying a back-
ward pass over the time horizon and a nonlinear forward
rollout of the dynamics. This algorithm notably exhibits
linear complexity in the time horizon and local quadratic
convergence [27]. More recently, Todorov revived the interest
in DDP by proposing the iterative Linear Quadratic Regulator
(iLQR) [8], a variant discarding the second-order terms of
the dynamics. It has since gained a lot of traction within
the robotics community [3]–[5], [14], [18], and its similarity
to Gauss-Newton optimization has been established [9],
[28]. However, this approach faces two main limitations:
1) as a single shooting method, it requires a dynamically
feasible initial guess, which makes the algorithm difficult
to warm-start, an essential requirement to reduce compu-
tation times [12] and 2) enforcing equality and inequality
constraints is not straightforward. The common practice is
to enforce constraints softly using penalty terms in the cost
function. But this approach is heuristic (i.e., it requires cost
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weight tuning) and tends to cause numerical issues [29].
Multiple shooting for optimal control, introduced in [30],

addresses the first limitation: it accepts an infeasible initial
guess. Several multiple shooting variants of DDP/iLQR were
proposed in [12], [14] with significantly improved conver-
gence abilities, which have enabled nonlinear MPC at high
frequency on real robots [1], [3], [6], [14].

The second issue of enforcing constraints inside a DDP-
like algorithm has been addressed in several works. [10] uses
a DDP-based projected Newton method to bound control
inputs. This approach has further been improved and de-
ployed on a real quadruped robot in [17]. More recently,
augmented Lagrangian methods have been used to enforce
constraints in iLQR/DDP algorithms [11], [13], [16], [19].
However, their convergence behavior is less understood than
DDP, whose seminal paper [7] was followed by sophisticated
proofs [27]. To the best of our knowledge, it has not yet
been shown that those recent DDP-based algorithms exhibit
global convergence (i.e., convergence from any initial point
to a stationary point) and quadratic local convergence.

In the face of these challenges, we propose to take a fresh
look at the earlier literature. Indeed, Dunn et al. showed that
Newton’s method could also be implemented in a DDP-like
fashion and equally benefit from linear complexity in the
time horizon and quadratic convergence [31]. This finding
indicates that optimal control does not fundamentally require
new nonlinear optimization tools but only tailored imple-
mentations that exploit the time-induced sparsity structure.
This naturally led to numerous extensions to the constrained
case [22], [32]–[39]. This paradigm has since been applied
to robotics: [26] recently proposed efficient software with an
SQP implementation for OCP. [40] studied how to exploit the
sparsity induced by time in IPOPT [41]. Unfortunately, this
line of work has not benefited from as much experimental
study as DDP-like algorithms. Recently, [42] showed im-
pressive experimental results on quadrupeds using a tailored
SQP implementation based on HPIPM [25], which lies in
the continuity of previous works using [25], [26] on real
hardware [43]–[45]. However, to the best of our knowledge,
we are not aware of closed-loop constrained nonlinear MPC
on torque-controlled robots.

We argue that there is a gap between the optimization-
based control and the robotics community. On the one
hand, an important part of the robotics community followed
the successes of [46] and continued to propose DDP-like
algorithms. On the other hand, the optimization-based control
community followed the work of [22], [33] and proposed
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(a) Quadrotor pose task with randomized initial state.
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(b) Humanoid taichi task with randomized end-effector goal.

Fig. 1: Percentage of problem solved as a function of the maximum number of iterations allowed on randomized unconstrained
OCPs for various solvers: DDP, FDDP with default line-search, FDDP with filter line-search and our SQP. Our SQP
implementation exhibits a faster and more robust convergence on difficult problems, such as the humanoid taichi task.

Fig. 2: Snapshots of a constrained end-effector tracking task with external disturbances.

efficient implementations of established optimization algo-
rithms [24], [26], [40]. In this work, we aim to bridge this
gap.

In this work, we follow the line of thought of the
optimization-based control community in order to push the
limits of closed-loop nonlinear MPC in robotics. First, we
shed light on the direct connection between modern multiple-
shooting DDP-like algorithms and textbook SQP algorithms.
Second, we show through an experimental study that a
standard stagewise SQP formulation is, in fact, superior to
the state-of-the-art FDDP [14] (as illustrated in Figure 1).
Third, we re-implement a QP solver tailored for optimal
control by leveraging Riccati recursions in order to maintain
linear complexity in the time horizon while also enforcing
constraints [23], [47]. Using this custom QP implementation
inside the SQP formulation, we can solve arbitrary nonlin-

ear constrained OCPs efficiently while inheriting the well-
known convergence properties of standard SQPs. Lastly, we
demonstrate the ability of this SQP formulation to enforce
arbitrary nonlinear constraints in MPC experiments on a
torque-controlled manipulator (see Figure 2). To the best
of our knowledge, this is the first demonstration of closed-
loop nonlinear MPC with hard constraints on real hardware.
The optimization software has been open-sourced in the
mim solvers library1 to ensure reproducible experiments
and enable easy use by the research community.
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