
IBRIDO: A Software Ecosystem for Research in Reinforcement
Learning-based Receding Horizon Control‡

Andrea Patrizi∗†, Carlo Rizzardo∗, and Nikos G. Tsagarakis∗

Abstract— Robotics research in locomotion is undergoing a
transformative shift towards the use of learning-based tools.
Learning methodologies have been shown to be capable of
remarkable robustness and performance even when applied to
real-world environments; however, they present limitations in
interpretability, safety guarantees and sample efficiency. For
this reason, it is the authors’ belief that more classical control
approaches should not be disregarded yet. We thus advocate
for a hybrid approach, combining offline data-based policy
design through Reinforcement Learning (RL), with classical
online Motion Planning, via Receding Horizon Control (RHC).
Even though this kind of hybrid approaches are not entirely
new, to the authors’ knowledge, there is no specific tool
currently available for research in this domain. To this purpose,
we developed a modular software ecosystem, hereby briefly
presented in its main components and features. To facilitate its
usability and diffusion, we made all the core components open
source under the GPLv2 license. Furthermore, to showcase the
potential of our framework and approach, we briefly present
a proof-of-concept example combining a high-level RL agent
coupled with a lower-level MPC controller for the execution of
a simple locomotion task on a simulated quadruped robot.

I. A BRIEF HYSTORICAL OVERVIEW: from Markov
Decision Processes and Dynamic Programming to modern

Receding Horizon Control and Reinforcement Learning

State-of-the-art of locomotion and manipulation pipelines
have been shown to be capable of remarkable performance
and robustness [1]–[4]. These results stand on the shoulders
of more than seventy years of research in robotics, control
and learning, starting from the very first industrial automated
robot Unimate in the 1950s [5], Richard Bellman’s pioneer-
ing work in the late 1950s and early 1960s on Markov De-
cision Processes (MDPs) [6] and Dynamic Programming [7]
(DP), and the establishment of Machine Learning (ML) as
consolidated field of study.

MDPs are a mathematical framework used to model se-
quential decision-making and are described by a set of states
S and a set of possible actions A that the decision-maker can
choose from. Upon taking an action a ∈ A in a particular
state s ∈ S, the system transitions to a new state s′ ∈ S,
with associated immediate reward r(s, a, s′), according to a
probability distribution p(s′ | s,a). Reinforcement Learning
(RL) methods aim at finding an optimal policy π∗(a |s)
that maximizes the cumulative (discounted) reward Rt =
∑

n−1
k=0 γk · rt+k obtained by the decision-maker over a time

horizon.
†

Department of Informatics, Bioengineering, Robotics and Systems En-
gineering, Università di Genova, Via All’Opera Pia 13, 16145 Genova.∗

Humanoids and Human-Centred Mechatronics (HHCM), Istituto Ital-
iano di Tecnologia (IIT), Via San Quirico 19d, 16163 Genova.‡

This project has received funding from the European Union’s Horizon
Europe Framework Programme under grant agreement No 101070596

The formulation of MPDs, in conjunction with the in-
troduction of the Bellman equation [7], the value func-
tions and Value Iteration algorithm, laid the foundations
of DP as a systematic method for solving sequential-
decision problems by breaking them down into simpler sub-
problems [7]. The development of Policy Iteration [8], TD-
learning [9], Q-learning [10], the increased popularization
of back-propagation [11] as a way of training powerful
neural function approximators and the ever-increasing com-
putational resources progressively paved the way to today’s
most successful and employed on-policy and off-policy RL
algorithms PPO [12] and SAC [13], respectively.

In an analogous way, DP principles served as a founda-
tional basis for the evolution of modern RHC [14], which
iteratively solves a finite-horizon optimal control problem
over short time intervals, considering system dynamics and
constraints. Over the years, many algorithms for the solution
of receding-horizon nonlinear optimization problems have
been developed, and several of them are directly tied to
the continuous-time dynamics declination of DP, namely
Differential Dynamic Programming (DDP) [15]–[18].

II. A HYBRID APPROACH: Learning-Based Receding
Horizon Control with Reinforcement Learning

Most of the currently employed control tools and pipelines
for locomotion rely either on online “model-based” con-
trollers [3], [14] or “model-free” learned policies (often
RL-based and trained offline) [1], [2], [19]–[31], with few
exceptions [32]. In the past years there have been several
attempts at combining learning-based methods and receding
horizon controllers, e.g. [33], [34]. Specifically, the following
main approaches can be identified [35]:

1) Model augmentation: integration of learned models into
RHC controllers to improve prediction accuracy and
control performance [19]–[21].

2) Adaptive tuning and parameter optimization: RHC pa-
rameters tuning (e.g. weights, costs, constraints), based
on real-time data [22]–[26], [36].

3) Safety: a learned-policy is coupled with a RHC con-
troller, which in this context takes the role of a safety
filter [27]–[31].

Our approach to RL-based RHC, which is synthetically
depicted in Fig. 1, can be framed as a hybrid between 1) and
3) and it is to some extent complementary to what was done
in [35], where a RHC is used to rollout reference motions and
footstep plans during the training of a RL tracking policy.
Instead of using the RHC controller just for training, we
actually aim at hierarchically coupling it with a higher level
agent during both training and real-world deployment. This



Created by Creative Mahira
from the Noun Project

Fig. 1. Our take on Learning-based Receding Horizon Control: a RHC controller is hierarchically coupled with a higher-level RL agent during both
training and real-world deployment. The RL agent has control over key RHC run-time parameters like contact phases and twist commands and can monitor
its internal state (costs, constraint violations). The agent learns to exploit the underlying RHC controller to perform the tracking of user-specified high-level
task references.

Fig. 2. High-level overview of the software implementation of the training
environment to which the agent is exposed: the robot in the simulator
is controlled through a joint-level impedance controller, which is in turn
used by a higher-level receding horizon controller. The agent can indirectly
control the robot through the latter. The training environment lives in
an independent process and uses shared memory for interacting with the
simulation environment.

allows to tackle problems which are non-trivial at the RHC
level (like contact phase selection), while also exploiting
the robustness and flexibility of the agent and the safety
guarantees of the RHC controller. This approach, however,
entails several challenges, particularly from a practical point
of view (integration, computational complexity, generaliza-
tion, reward formulation), which indeed make the required
implementation effort non-negligible.

III. IBRIDO IMPLEMENTATION: framework overview and
main components

Most RL methods, especially on-policy ones, can be
considerably sample inefficient, and training robust policies
for real world deployment via domain randomization can
further exacerbate the need for vast amounts of data. To over-
come this issue we make use of GPU-accelerated simulation
tools [37], [38], which allow to generate massive amounts of
simulated experience in a short amount of time. We choose
Omniverse IsaacSim [37] as the simulation backend, while
we use PyTorch for all deep-learning related components and
Horizon [39] for formulating and running RHC controllers
on CPU, with an iLQR solver backend. Fig. 2 shows a high

Fig. 3. Preliminary results showing the agent during learning while it
moves the robot forward using the RHC controller, from left to right and
from top to bottom. The corresponding video is available at [45]

level software overview of the system, which is made of the
following main modules:
• SharsorIPCpp [40] serves as the shared memory back-

end for fast data sharing and synchronization between
all components on CPU.

• OmniRoboGym [41] is used as a wrapper around Isaac-
Sim and provides an interface to the simulation envi-
ronment.

• CoClusterBridge [42] exploits [40] and coordinates the
connection and synchronization between the simulation
environment and a cluster of RHC controllers. It fur-
thermore provides abstractions for the controllers and
an extensible debug GUI for monitoring the cluster.

• LRHControl [43] is the main package of the ecosystem
and is responsible for setting up and running the simu-
lation environment, the control cluster and the training
environment.

• RHCViz [44] is a debug tool based on ROS1/ROS2 and
RViz for visualizing RHC solutions in real-time. For
our specific use case, it also allows to inspect a single
environment during training without the need of any
rendering on the simulator side.

IV. A PROOF-OF-CONCEPT EXAMPLE: learning to step

To showcase the potential of the proposed hybrid RL-RHC
approach and of our framework, we trained a RL agent using
PPO [12] to exploit a RHC controller for achieving a very
simple forward locomotion task on a quadruped robot (shown
in Fig. 3). The agent is given a forward velocity reference
and is continuously rewarded based on the task error and the
performance of the underlying RHC controller. Notably, we
observe the emergence of completely acyclic contact phases,
varying from crawling to bound-like patterns.



REFERENCES

[1] L. Schneider, J. Frey, T. Miki, and M. Hutter, “Learning risk-aware
quadrupedal locomotion using distributional reinforcement learning,”
arXiv preprint arXiv:2309.14246, 2023.

[2] T. Miki, J. Lee, L. Wellhausen, and M. Hutter, “Learning to walk in
confined spaces using 3d representation,” 2024.

[3] B. Dynamics, “Atlas Gets a Grip.” https://www.youtube.com/
watch?v=-e1_QhJ1EhQ, 2023.

[4] B. Dynamics, “Stepping Up, Reinforcement Learning with Spot.”
https://www.youtube.com/watch?v=Kf9WDqYKYQQ,
2023.

[5] M. Xu, J. M. David, S. H. Kim, et al., “The fourth industrial
revolution: Opportunities and challenges,” International journal of
financial research, vol. 9, no. 2, pp. 90–95, 2018.

[6] R. Bellman, “A markovian decision process,” Journal of mathematics
and mechanics, pp. 679–684, 1957.

[7] R. Bellman and R. Kalaba, “Dynamic programming and adaptive
processes: mathematical foundation,” IRE Transactions on Automatic
Control, no. 1, pp. 5–10, 1960.

[8] R. A. Howard, “Dynamic programming and markov processes,” 1960.
[9] A. G. Barto, R. S. Sutton, and C. W. Anderson, “Neuronlike adaptive

elements that can solve difficult learning control problems,” IEEE
transactions on systems, man, and cybernetics, no. 5, pp. 834–846,
1983.

[10] C. J. C. H. Watkins, “Learning from delayed rewards,” 1989.
[11] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning rep-

resentations by back-propagating errors,” nature, vol. 323, no. 6088,
pp. 533–536, 1986.

[12] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

[13] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” in International conference on machine learning, pp. 1861–
1870, PMLR, 2018.

[14] R. Grandia, F. Jenelten, S. Yang, F. Farshidian, and M. Hutter,
“Perceptive locomotion through nonlinear model-predictive control,”
IEEE Transactions on Robotics, 2023.

[15] D. H. Jacobson and D. Q. Mayne, “Differential dynamic program-
ming,” (No Title), 1970.

[16] E. Todorov and W. Li, “A generalized iterative lqg method for locally-
optimal feedback control of constrained nonlinear stochastic systems,”
in Proceedings of the 2005, American Control Conference, 2005.,
pp. 300–306, IEEE, 2005.

[17] M. Diehl, H. J. Ferreau, and N. Haverbeke, “Efficient numerical
methods for nonlinear mpc and moving horizon estimation,” Nonlin-
ear model predictive control: towards new challenging applications,
pp. 391–417, 2009.

[18] Y. Tassa, T. Erez, and E. Todorov, “Synthesis and stabilization of
complex behaviors through online trajectory optimization,” in 2012
IEEE/RSJ International Conference on Intelligent Robots and Systems,
pp. 4906–4913, IEEE, 2012.

[19] A. Aswani, H. Gonzalez, S. S. Sastry, and C. Tomlin, “Provably safe
and robust learning-based model predictive control,” 2012.

[20] E. Terzi, L. Fagiano, M. Farina, and R. Scattolini, “Learning multi-
step prediction models for receding horizon control,” in 2018 European
Control Conference (ECC), pp. 1335–1340, IEEE, 2018.

[21] R. Soloperto, M. A. Müller, S. Trimpe, and F. Allgöwer, “Learning-
based robust model predictive control with state-dependent uncer-
tainty,” IFAC-PapersOnLine, vol. 51, no. 20, pp. 442–447, 2018.

[22] F. Berkenkamp, A. P. Schoellig, and A. Krause, “Safe controller
optimization for quadrotors with gaussian processes,” in 2016 IEEE
international conference on robotics and automation (ICRA), pp. 491–
496, IEEE, 2016.

[23] A. Marco, P. Hennig, J. Bohg, S. Schaal, and S. Trimpe, “Automatic
lqr tuning based on gaussian process global optimization,” in 2016
IEEE international conference on robotics and automation (ICRA),
pp. 270–277, IEEE, 2016.

[24] F. D. Brunner, M. Lazar, and F. Allgöwer, “Stabilizing model predic-
tive control: On the enlargement of the terminal set,” International
Journal of Robust and Nonlinear Control, vol. 25, no. 15, pp. 2646–
2670, 2015.

[25] U. Rosolia and F. Borrelli, “Learning how to autonomously race a car:
a predictive control approach,” IEEE Transactions on Control Systems
Technology, vol. 28, no. 6, pp. 2713–2719, 2019.

[26] P. Englert, N. A. Vien, and M. Toussaint, “Inverse kkt: Learning cost
functions of manipulation tasks from demonstrations,” The Interna-
tional Journal of Robotics Research, vol. 36, no. 13-14, pp. 1474–
1488, 2017.

[27] T. Koller, F. Berkenkamp, M. Turchetta, and A. Krause, “Learning-
based model predictive control for safe exploration,” in 2018 IEEE
conference on decision and control (CDC), pp. 6059–6066, IEEE,
2018.

[28] K. P. Wabersich, L. Hewing, A. Carron, and M. N. Zeilinger,
“Probabilistic model predictive safety certification for learning-based
control,” IEEE Transactions on Automatic Control, vol. 67, no. 1,
pp. 176–188, 2021.

[29] J. H. Gillulay and C. J. Tomlin, “Guaranteed safe online learning of
a bounded system,” in 2011 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pp. 2979–2984, IEEE, 2011.

[30] K. P. Wabersich and M. N. Zeilinger, “Safe exploration of nonlinear
dynamical systems: A predictive safety filter for reinforcement learn-
ing,” arXiv preprint arXiv:1812.05506, 2018.

[31] F. Berkenkamp, M. Turchetta, A. Schoellig, and A. Krause, “Safe
model-based reinforcement learning with stability guarantees,” Ad-
vances in neural information processing systems, vol. 30, 2017.

[32] F. Jenelten, J. He, F. Farshidian, and M. Hutter, “Dtc: Deep tracking
control,” Science Robotics, vol. 9, Jan. 2024.

[33] V. Tsounis, M. Alge, J. Lee, F. Farshidian, and M. Hutter, “Deepgait:
Planning and control of quadrupedal gaits using deep reinforcement
learning,” IEEE Robotics and Automation Letters, vol. 5, no. 2,
pp. 3699–3706, 2020.

[34] S. Gangapurwala, M. Geisert, R. Orsolino, M. Fallon, and I. Havoutis,
“Real-time trajectory adaptation for quadrupedal locomotion using
deep reinforcement learning,” in 2021 IEEE International Conference
on Robotics and Automation (ICRA), pp. 5973–5979, IEEE, 2021.

[35] L. Hewing, K. P. Wabersich, M. Menner, and M. N. Zeilinger,
“Learning-based model predictive control: Toward safe learning in
control,” Annual Review of Control, Robotics, and Autonomous Sys-
tems, vol. 3, pp. 269–296, 2020.

[36] A. Romero, Y. Song, and D. Scaramuzza, “Actor-critic model predic-
tive control,” arXiv preprint arXiv:2306.09852, 2023.

[37] NVIDIA, “NVIDIA Isaac Sim.” https://developer.nvidia.
com/isaac-sim.

[38] Google-DeepMind, “Mujoco 3.” https://github.com/
google-deepmind/mujoco/discussions/1101.

[39] F. Ruscelli, A. Laurenzi, N. G. Tsagarakis, and E. M. Hoffman,
“Horizon: a trajectory optimization framework for robotic systems,”
Frontiers in Robotics and AI, vol. 9, 2022.

[40] A. Patrizi, “SharsorIPCpp.” https://github.com/
AndrePatri/SharsorIPCpp, 2023.

[41] A. Patrizi, “OmniRoboGym.” https://github.com/
AndrePatri/OmniRoboGym, 2023.

[42] A. Patrizi, “CoClusterBridge.” https://github.com/
AndrePatri/CoClusterBridge, 2023.

[43] A. Patrizi, “LRHControl.” https://github.com/
AndrePatri/LRHControl, 2023.

[44] A. Patrizi, “RHCViz.” https://github.com/AndrePatri/
RHCViz, 2023.

[45] A. Patrizi, “IBRIDO; proof-of-concept.” proof-of-concept.

https://www.youtube.com/watch?v=-e1_QhJ1EhQ
https://www.youtube.com/watch?v=-e1_QhJ1EhQ
https://www.youtube.com/watch?v=Kf9WDqYKYQQ
https://developer.nvidia.com/isaac-sim
https://developer.nvidia.com/isaac-sim
https://github.com/google-deepmind/mujoco/discussions/1101
https://github.com/google-deepmind/mujoco/discussions/1101
https://github.com/AndrePatri/SharsorIPCpp
https://github.com/AndrePatri/SharsorIPCpp
https://github.com/AndrePatri/OmniRoboGym
https://github.com/AndrePatri/OmniRoboGym
https://github.com/AndrePatri/CoClusterBridge
https://github.com/AndrePatri/CoClusterBridge
https://github.com/AndrePatri/LRHControl
https://github.com/AndrePatri/LRHControl
https://github.com/AndrePatri/RHCViz
https://github.com/AndrePatri/RHCViz
https://drive.google.com/drive/folders/1AElhLFdf78PN8oJaOUj6XQaBr6t7tKk9

	A Brief Hystorical Overview: from Markov Decision Processes and Dynamic Programming to modern Receding Horizon Control and Reinforcement Learning
	A hybrid approach: Learning-Based Receding Horizon Control with Reinforcement Learning
	IBRIDO Implementation: framework overview and main components
	A proof-of-concept example: learning to step
	References

