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I. INTRODUCTION

Utilizing the linearized Single Rigid Body Dynamics
(SRBD) model for Model Predictive Control (MPC) of
quadrupedal robots has shown great promise [1], [2]. The
performance of such simplified models often degrades under
significant modeling uncertainties. Domain randomization
techniques in reinforcement learning offer a viable solution
to the aforementioned challenge [3]. However, these data-
driven approaches frequently fall short of providing inter-
pretability in real-world contexts. Additionally, the training
process can be both time-intensive and require significant
computational resources.

Alternatively, parametric and additive uncertainty in robot
dynamics can be addressed using Robust MPC (RMPC) and
Stochastic MPC (SMPC). In practice, solutions from RMPC
can be conservative if an overapproximation of the unknown
uncertainty sets is used [4], [5]. SMPC helps mitigate this
challenge by taking into account a distribution of uncertain-
ties and providing a customizable threshold for the maximum
probability of constraint violation. Nevertheless, existing
SMPC methods are computationally intensive making them
unsuitable for real-time MPC applications [6].

In this paper, we separate the uncertainties linked to the
SRBD model from those involving surface friction estima-
tion. Our approach is termed Adaptive Robust MPC (AR-
MPC), akin to Adaptive MPC [7], as we begin with an initial
estimation of the uncertainty sets and aim for convergence
to their accurate values using data gathered during robot
operation. These evolving uncertainty sets are integrated
into an RMPC framework to maintain robustness against
worst-case modeling errors. Ensuring robustness is achieved
with only a minimal increase in computational demand.
In the following section, we detail the steps involved in
implementing our method.

II. METHOD

We begin by defining the following variables: θ ∈ R3

as Euler angles, p ∈ R3 as the center of mass (CoM)
position, ω ∈ R3 for angular velocity, ṗ ∈ R3 as CoM
velocity, g ∈ R for the scalar of gravity acceleration, and
fi = [fx

i , f
y
i , f

z
i ]

⊤ ∈ R3 to denote contact forces for the ith

foot. State-space x and control action u are:

x ≜
[
θ⊤, p⊤, ω⊤, ṗ⊤,−g

]⊤
, u ≜

[
f⊤
1 , . . . , f⊤

4

]⊤
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Fig. 1: Adaptive Robust MPC aims to generate optimal
ground reaction forces despite unknown payloads, uneven
terrains and slippery surfaces.

The linearized SRBD model from [2] can be expressed as:

xi+1 = Aixi +Biui (1)

Here, at time instant i, Ai is the state transition matrix and Bi

is the control selection matrix. The matrix Bi is a function of
the robot’s inertia I3×3, mass m, and stance-foot positions r.
We now consider bounded yet unknown uncertainties in these
parameters, namely ∆I3×3, ∆m, and ∆r. Additionally, to
account for terrain compliance, we consider unmodeled foot-
contact forces ∆f . Under these assumptions, the discretized
form of the linearized SRBD model derived in [2] can be
extended as:

xi+1 = Aixi + (Bi +∆Bi)(ui +∆ui)

= Aixi +Biui + Eθai
(2)

Eθai represents the time-varying cumulative effects of mod-
eling uncertainties. The least conservative domain of Eθai is
referred to as the Feasible Parameter Set (FPS) [8]. While the
FPS is not known in practice, it can be approximated based
on a history of past robot observations. This approximation
is more accurate for a larger look-back horizon p. We
approximate the FPS as a polytope, Ω:

Ω = {Eθi : H(Eθi) ≤ h} (3)

Here, H and h are functions of the vector of variables:

{A0, . . ., A−p, B0, . . ., B−p, x0, . . ., x−p, u0, . . ., u−p} (4)

The online update expressions for Ω are recursive in
nature and can be computed efficiently. Further, the size of
Ω reduces with time. This helps alleviate the conservatism
associated with standard Tube-Based RMPC algorithms [9].



A. Control Law and Friction Cone Constraints

Control laws that work well in practice for robust and
stochastic optimal control formulations consist of a feedback
term to account for disturbances and an additive feedforward
term [6]. At iteration i of the RMPC, the control action is
expressed as:

ui ∈ R12 = KiEθi︸ ︷︷ ︸
feedback term

+ vi︸︷︷︸
feedforward term

(5)

Here, Ki is a stabilizing feedback gain obtained by solv-
ing the corresponding Discrete Algebraic Ricatti Equation
(DARE).

Similar to [4], we consider the bounded uncertainty fric-
tion cone-constraints at iteration i of the RMPC as:

(Cnom + Cdistz)ui = (Cnom + Cdistz)(KiEθi + vi) ≤ 0 (6)

z ∈ Z ≜ {z ∈ R | −ρ ≤ z ≤ ρ} (7)

The matrix Cnom depends on the nominal friction co-
efficient µnom, while Cdist depends on the expected error
in the friction coefficient µdist. The scalar ρ can modulate
the effects of µdist such that a higher value implies more
frictional uncertainty. By introducing additional decision
variables λ, [4] converted bounded friction uncertainties into
additional linear constraints in their optimization formula-
tion. Applying a similar approach to our control law shown
in Eqn. 5, Eqn. 6 can then be reformulated as:

Cnom(KiEθi + vi) + λ⊤
i αρ ≤ 0, (8)

λ⊤
i β − Cdist(KiEθi + vi) = 0. (9)

λi ≥ 0 (10)

Here, α and β are constant matrices. As is common in
RMPC approaches, the effects of θi on the constraints in
Eqn. 8 can be replaced by their worst-case contributions.
This results in the following maximization linear program:

γi = max
θi∈Ω

CnomKiEθi (11)

θ∗i = argmax
θi∈Ω

CnomKiEθi (12)

Finally, the constraints in Eqns. 8 and 9 take the form:

γi + Cnomvi + λ⊤
i αρ ≤ 0 (13)

λ⊤
i β − Cdist(KiEθ∗i + vi) = 0 (14)

B. Robust MPC and Friction Cone Uncertainty Adaptation

In summary, the RMPC problem involves solving the
following Quadratic Programming problem:

min
x[.],v[.],λ[.]

N−1∑
i=0

(
||xi − xi,desired||2Q + ||vi||2R

)
s.t. Eqn. 1, Eqn. 10, Eqn. 13, Eqn. 14

(15)

Eqn. 15 is in the form of a standard convex-MPC problem
over a prediction horizon N . Q and R are tuning weights to
penalize trajectory tracking errors and large control actions,

respectively. Eqn. 1 is a linear equality constraint on decision
variables x and v, while Eqn. 13 and Eqn. 14 are linear
inequality and equality constraints on decision variables λ
and v. Eqn. 15 can be efficiently solved to global optima
using QP solvers, such as [10], [11].

Similar in principle to the online refinement of the FPS,
we also propose adjusting the domain of z in Eqn. 7.
Any optimal solution of Eqn. 15, (x∗[.], v∗[.], λ∗[.]), must
also satisfy the constraint Eqn. 13. Using this fact, we can
formulate the following minimization Linear Program in ρ:

ρ∗ = min
ρ

ρ (16)

s.t. γi + Cnomv
∗
i + λ∗⊤

i αρ ≤ 0, ∀i = 0 . . . N − 1

Eqn. 16 finds the least conservative value ρ∗ that still satisfies
the MPC solution. Thus, we slowly converge to the true
friction constraint factor µnom + µdistρ

∗.
Algorithm 1 summarizes the proposed AR-MPC.

Algorithm 1 Adaptive Robust MPC

1: Given:
2: p: Lookback horizon for Ω estimation
3: Q: State tracking weights
4: R: Control weights
5: Ω: Current estimate of FPS
6: N : MPC Horizon
7: µnom, µdist: Nominal, disturbance friction coefficients
8: ρ: Current estimate of scalar for friction uncertainty
9:

10: Step 1:
11: for i = 0 to N − 1 do
12: Ki ← DARE Solution
13: γi, θi ← Eqns. 11 and 12
14: end for
15:
16: Step 2:
17: Ω← Update using expressions from Eqns. 3 and 4
18: x∗[.], v∗[.], λ∗[.]← Solve Eqn. 15
19: ρ← Solve Eqn. 16
20:
21: Repeat Step 1

III. CONCLUSION

In this paper, we proposed an algorithm for robust ground
reaction force-based control during quadrupedal locomotion.
We analyzed robustness against set-bounded modeling and
friction estimation uncertainties. By adapting these sets on-
line, we aim to achieve reduced conservatism in comparison
to standard tube-based RMPC algorithms. Our hardware
experiments will be designed to assess robustness to these
aspects. We intend to load the robot with heavy payloads and
evaluate navigation across a grassy terrain while tracking a
desired CoM trajectory. This terrain will also feature wooden
blocks of arbitrary height and orientation. Currently, we are
conducting simulation tests using PyBullet [12] as in Figure
1 and hardware tests on a Unitree Go1-Edu quadruped robot.
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