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Constrained Articulated Body Dynamics Algorithms
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I. INTRODUCTION

Efficient rigid body dynamics algorithms [1] have played an
essential role in robotics development. They enable dynamics
evaluation in chip sets with limited resources and at high
frequencies for demanding applications (e.g., computed torque
control, model predictive control, large-scale simulation, rein-
forcement learning, etc.). Most simulators [2]–[6] use low-
complexity algorithms such as the articulated body algorithm
(ABA) [1], [7]–[9], which has O(n) complexity, where n
is the robot’s degrees-of-freedom (DoF) only in constraint-
free settings. In constrained settings, the simulators resort to
Featherstone’s sparsity-exploiting LTL algorithm in the joint
space [10], [11], which has high computational complexity of
O(nd2+m2d+md2+m3), where m and d are the constraint
dimensionality and the kinematic tree depth respectively.

A few low-complexity algorithms have been proposed
for constrained dynamical systems, such as the Popov-
Vereshchagin algorithm (PV algorithm) [12], [13] for kine-
matic trees with O(n + m2d + m3) complexity. The PV
algorithm was independendly discovered and further extended
to kinematic loops in [14], [15] with the same computational
complexity. See [16] for an expository derivation of the PV
algorithm by solving the Gauss’ principle of least constraint
(GPLC) [17] using an equivalent linear quadratic regulator
(LQR) formulation. [16] also proposed PV-soft and PV-early
algorithms, each with only O(n + m) complexity. PV-soft
relaxes all motion constraints using quadratic penalties, while
PV-early relies on the expensive singular value decomposi-
tion [18] (SVD). However, these efficient algorithms suffer
from being fairly complex to derive and implement and
perhaps due to which, their usage in simulators is currently
low. Moreover, they cannot adequately deal with singular
cases (e.g., redundant constraints, singular constraints, etc.),
in which cases, they resort to Tikhonov regularization (which
biases solutions towards origin adversely affecting constraint
satisfaction) or the expensive SVD algorithms.
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Fig. 1: Overview of the proximal dynamics algorithms.
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Addressing these issues, we present three new constrained
dynamics algorithms (CDAs) constrainedABA, proxPV and
proxLTLs based on proximal algorithms [19] that are sim-
ple and effectively handle singular cases. These algorithms
are closely related to the proxLTL [6] algorithm and arise
depending on whether joint accelerations or constraint forces
are eliminated first and depending on the usage of maximal or
minimal coordinates as shown in the overview figure Fig. 1.

II. PROXIMAL REFORMULATION OF CONSTRAINED
DYNAMICS

A. Constrained dynamics in generalized coordinates

Constrained dynamics. According to GPLC [17], [20], [21],
the acceleration ν̇ of a constrained system at state (q,ν), when
acted upon by τ , is the minimizer of the following equality-
constrained strongly convex quadratic program (QP):

minimize
ν̇

1

2
∥ν̇ − ν̇free(q, ν̇, τ )∥2M(q) (1a)

subject to Jfc(q)ν̇ + J̇fc(q,ν)ν = a∗
c − γfc(q,ν), (1b)

where M(q) ∈ Sn++ is the joint-space inertia matrix (JSIM)
and unconstrained joint-space acceleration

ν̇free(q, ν̇, τ ) := M−1(q) (τ − c(q,ν)) , (2)

where c(q,ν) is the generalized force vector due to gravity,
Coriolis and centripetal effects. Eq. (1b) is motion constraint
expressed at the acceleration level. The variable dependencies
will be dropped for brevity whenever obvious from the context.
Constrained dynamics Lagrangian. The solution to the QP
above is the primal-dual saddle point of the Lagrangian [22]

(ν̇∗,λ∗) = arg max
λ

min
ν̇

L(ν̇,λ), (3)

where

L(ν̇,λ) := 1

2
∥ν̇ − ν̇free∥2M + λT (Jfc ν̇ + γfc − a∗

c). (4)

Eliminating ν̇ using

ν̇ = ν̇free −M−1JT
fcλ, (5)

and back-substituting in Eq. (3), gives the dual function

g(λ) = −1

2
λTΛ−1λ+

(
Jfc ν̇free + γfc − a∗

c

)T
λ, (6)

where Λ−1(q) := JfcM
−1JT

fc
is the so-called Delassus matrix

[23], [24], also known as the inverse operational space inertial
matrix (inverse OSIM) [25]. When Λ−1 is full rank, the
optimal Lagrange multipliers is obtained by solving

Λ−1λ∗ = Jfc ν̇free + γfc − a∗
c . (7)

However, in practice, Λ−1 often does not have full rank due
to redundant constraints or kinematic singularities and we
propose using two popular optimization approaches to solving
the QP in Eq. (1), that are mathematically equivalent but differ
in their computational cost.
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1) Dual proximal point method (proxLTL): An exact and
efficient alternative to Tikhonov regularization or SVD that we
will leverage is the proximal point algorithm (PPA) [19], [26],
which is effective for robotics problems [27]–[29], and most
often requiring few iterations (each of which is efficient) to
converge for robot dynamics problems [27]. Applying PPA to
optimize the dual function in Eq. (6) gives

λk+1 =proxµ,−g(λ
k) = arg min

λ
− g(λ) +

1

2µ
∥λ− λk∥2,

(8a)

=Λµ

(
Jfc ν̇free + γfc − a∗

c +
1

µ
λk

)
, (8b)

where Λ−1
µ := Λ−1 + 1

µI is the damped Delassus matrix.
Λ−1
µ ∈ Sm++ and can be factorized efficiently using Cholesky

decomposition. This algorithm, which we will call proxLTL,
has already been implemented in the PINOCCHIO library [27].
Even if the primal problem in Eq. (1) is infeasible (e.g., due
to redundant constraints and Baumgarte terms [30]), it has
been shown [31]–[33] that the primal residuals converges to a
desirable least squares residual solution during PPA iterations.

2) Augmented Lagrangian method (proxLTLs): An alterna-
tive to proxLTL that can solve the QP in Eq. (1) exactly is the
augmented Lagrangian method [34], [35] (ALM), where the
augmented Lagrangian function is

LA(ν̇,λ) := L(ν̇,λ) + µ

2
∥Jfc ν̇ + γfc − a∗

c∥2. (9)

ALM iterations alternately optimize LA over its primal and
dual variables

ν̇k+1 = M−1
µ

{
M ν̇free − JT

fc

(
λk + µ

(
γfc − a∗

c

))}
,

(10a)
λk+1 = λk + µ

(
Jfc ν̇

k+1 + γfc − a∗
c

)
, (10b)

where Mµ := M + µJT
fc
Jfc is the augmented JSIM, with the

influence of the constraints from the quadratic term in the
augmented Lagrangian function.

B. Constrained dynamics in maximal coordinates

In the so-called ‘maximal’ coordinates, we will use Feath-
erstone’s spatial algebra [1] to refer to rigid body quantities.
Both proxLTL and proxLTLs algorithms have lower complex-
ity counterparts proxPV and constrainedABA respectively, that
can be derived by applying dynamic programming (DP) on
the problem of Gauss’ principle in the so-called maximal
coordinates [21]

minimize
ν̇,a

nb∑
i=1

{
1

2
aTi Hiai − fTi ai

}
(11a)

subject to ai = aπ(i) + Siν̇i + ab,i, i = 1, 2, . . . , nb,
(11b)

Kiai = ki, i = 1, 2, . . . , nb, (11c)
a0 = −agrav, (11d)

All the spatial quantities are expressed in the inertial frame in
our subsequent derivations for simplicity of notation. π(i) is
the parent link of the ith link in the kinematic tree, νi ∈ Rni is
the ith joint’s generalized velocities, ν̇i ∈ Rni is the ith joint’s

generalized accelerations. Si is the ith joint’s motion subspace
matrix of size 6× ni, with ni being the ith joint’s DoF.

III. COMPUTATIONAL BENCHMARKING, DISCUSSION AND
CONCLUSIONS

We now present the benchmarking results of this paper’s
algorithms on diverse robots, namely Kuka Iiwa (7 DoF chain),
Solo (18 DoF tree) [36], Talos (50 DoF tree) [37], and Atlas
with two shadow-hands attached to each wrist (84 DoF tree).
Constraints on a hand, fingertip, or feet in the benchmarks are
represented as Hmi

, Tmi
or Fmi

respectively where mi is the
constraint dimension. We implemented proxPV, proxLTLs and
constrainedABA in C++ within the PINOCCHIO library [6],
and compared them along with the proxLTL algorithm [27]
already available in PINOCCHIO. All timings were bench-
marked on a 13th Gen Intel® Core™ i9-13950HX
laptop CPU running Ubuntu 22.04LTS operating system.
The code was compiled using Clang-14 compiler with the
usual optimized compilation flags -O3 -march=native.
Table I lists the benchmarking results.

TABLE I: Computational timings of the algorithms in µs
with Turbo Boost enabled. Each algorithm is allowed three
proximal iterations.

System cABA PV LTLs LTL
Iiwa - H3 0.97 0.95 0.99 1.51
Iiwa - H6 1.02 1.33 1.0 2.0
Solo - F2

3 1.81 2.11 2.06 3.08
Solo - F4

3 2.25 2.84 2.27 4.06
Talos - F2

6 5.02 6.27 7.14 10.2
Talos - F2

6H
2
6 6.21 8.84 7.57 14.5

Atlas SR - F2
6 7.90 9.56 13.4 17.7

Atlas SR - F2
6T

5
3 9.95 14.0 14.7 26.5

Atlas SR - F2
6T

10
3 11.7 20.8 15.0 36.8

ConstrainedABA is the first linear complexity algorithm that
deals with singular cases without resorting to expensive SVD
computation, that we are aware of, and perhaps the simplest.
ConstrainedABA emerged as the fastest out of the four algo-
rithms for larger robots like quadrupeds and humanoids, being
over 2x faster than proxLTL, the previously existing state-of-
the-art C++ implementation. The higher complexity proxLTLs
surprisingly remained competitive even for larger robots, when
heavily constrained, due to linear complexity in constraint
dimension and an efficient vectorized C++ implementation.

The proximal formulation generalizes and establishes con-
nections between existing algorithms like MUJOCO’s solver,
PV-soft, and PV-early. It is a powerful formulation that enables
efficient trading-off between MUJOCO-style compliance and
an expensive SVD-style rigid contact during singular cases
(and also in general) through fast proximal iterations. Con-
strainedABA and proxLTLs, in particular, are fairly straight-
forward to implement, by introducing only a few new lines of
additional code compared to Featherstone’s original ABA and
LTL algorithms.

We invite interested readers to refer to [38] for a complete
description, derivation, analysis and detailed benchmarking of
the presented algorithms. [38] also proposes cABA-OSIM,
which computes the damped Delassus inverse matrix with the
optimal complexity of O(n+m2).
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