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Abstract— This work proposes a novel approach to accelerate
Model Predictive Control (MPC) for legged robots through
distributed optimization. Our method decomposes the robot
dynamics into smaller subsystems, utilizing the Alternating
Direction Method of Multipliers to ensure consensus among
them. Given this parallelization, our approach greatly decreases
the computational time of the final control law compared to
state-of-the-art approaches, enabling faster control loops on
complex robotic systems. Through numerical evaluations, we
demonstrate the convergence of our method and compare its
computational efficiency against a centralized approach, show-
ing up to a 75 % reduction in the solving time. The full paper
can be found at https://arxiv.org/abs/2403.11742

I. MOTIVATION

The recent advancements in computer hardware and the
development of Nonlinear Programming (NLP) solvers spe-
cially tailored for optimal control like [1], [2], and [3]
have opened doors to solve online complex Optimal Control
Problem (OCP). Works like [4] and [5] have achieved online
re-planning while using a whole-body model to fully exploit
the robot’s capabilities. The high complexity reached by
the OCPs in those implementations is remarkable given the
limited time budget available for solving them in a receiv-
ing horizon fashion. Different paradigms try to reduce the
computation burden by decomposing the system dynamics,
lowering in this way the problem dimension. [6] decoupled a
quadruped robot into two bipeds; nevertheless, their approach
is not suitable for generating highly dynamic motions due
to the intrinsic limitations of their instantaneous controller.
[7] proposed a similar decoupling principle but, while the
performance achieved in disturbance rejection is remarkable,
their implementation requires the knowledge of the cen-
tralized optimum limiting the controller to the tracking of
a pre-computed periodic orbit. Our approach, on the other
hand, partitions the robot into multiple independent subsys-
tems to speed up the computation and ensures coherence
among their solutions through a consensus formulation that
leverages a parallelized implementation of the Alternating
Direction Method of Multipliers (ADMM). In other words,
our approach boils down to running in parallel a separate
Model Predictive Control (MPC) for each subsystem, with
ADMM ensuring consistency between their optimizations.
This enables our algorithm to be virtually independent of
the complexity of the systems. For example, integrating
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∗ Accompanying video https://www.youtube.com/watch?v=
0KcTnGYjJPw

Fig. 1. Simulation snapshots of robotic systems controlled by the proposed
MPC with distributed optimization, performing different agile motions. On
the top, a quadruped standing up on two feet and walking forward. On
the bottom, a quadruped manipulator follows a triangular spiral with the
manipulator end-effector, the reference is highlighted in blue while the actual
trajectory is in green. The simulation can be seen in the accompanying
video∗.
an articulated arm onto a quadruped only requires adding
another subsystem in parallel and incorporating the relative
consensus in the formulation. By adopting this methodol-
ogy, our method can address complex whole-body motions
(see Fig. 1), while overcoming the curse of dimensionality
associated with using the robot’s full dynamics.

II. DISTIBUTED WHOLE-BODY MPC
Our method runs separated optimizations in parallel, one

for each subsystem we divide the robot into, followed by
a unique consensus scheme. The OCP related to the ith

subsystem can be written as
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qi,k+1 = qi,k ⊕ vi,k+1 (1c)

ui,k ∈ Uk control constraints (1d)
xi,k ∈ Xk state constraints (1e)
xi,0 = x̂i,0 initial condition (1f)

where with qi,k ∈ Rnq we represent the generalized coor-
dinates and with vi,k ∈ Rnv the generalized velocity. We
can then define the state vector as xi,k =

[
vi,k, qi,k

]T ∈
Rnv+nq , and the control vector as ui,k = [τ i,k,λi,k]

T ∈
Rnu+nc , with τ ∈ Rnu the joint torques and λ ∈ Rnc

the ground reaction forces. Eq. (1b) defines the ith part
of the decomposed robot dynamics, where M ∈ Rnv×nv

and b ∈ Rnv are respectively the mass matrix and the
”bias” vector that includes the Coriolis, centrifugal, and
gravitational terms. S ∈ Rnv×nu is a selector matrix and
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J ∈ Rnv×nc is the stack of jacobian associated with each
contact.

Our decomposition is based on the idea of considering the
separated subsystems interacting with each other through a
wrench F . For the ith subsystem, the wrench F i synthesizes
the dynamic effect of the other j subsystems and is defined
as

F idt = (J̄FM̄
−1

J̄
T
F )

−1∆vtot,k

Here, M̄ = diag(M0, . . . ,MNsys
) and J̄F =[

JF,0 . . . JF,Nsys

]T
with JF,i as the Jacobian that maps the

generalized velocity of the subsystems into the velocity at the
conjunction point with the other systems. ∆vtot represents
the sum of the effect of all systems and is defined as

∆vtot ≡
∑
∗∈X

JF,∗

(
v∗,k +M−1

∗ (b∗ − Sτ ∗ − JT
∗ λ∗)dt

)
Given the parallelization employed in this work, pre-
determining the variables of the jth subsystem beforehand is
not feasible. Consequently, we relied on past information at
algorithm iteration n when computing the n+ 1 update for
the ith subsystem, analogous to the methodology employed
in the ADMM. Indeed, such approximation is comparable
to the one already used in centralized MPC, where Newton-
based NLP solvers linearize the problem at each iteration
based on the previous optimal solution [8].

Finally, the cost Φi is defined as:

Φi = lT (xi(N)) +

N−1∑
k=0

[
l(xk,i,uk.i)+

+
∑
i,j∈X

||ri,j − ȳn
i,j ||2ρ

]
+ ||xi − xn||2σ

in which lT (xi(N)) and l(xk,i,uk.i) are the final and
running cost that comprehend a tracking and a regularizing
term. The sum ||ri,j − ȳn

i,j ||2ρ is the consensus term that
ensures the coherence of the speeds at the interface between
the subsystem, with ri,j = JF,ivi − JF,jvj as the residual
and ȳn

i,j as the scaled dual variable. Finally, ||xi − xn||2σ
is a regularization between iterations. In each iteration of
our algorithm, we perform in parallel only one full Newton
step of the single subsystem optimization and then we
update the dual variable. We keep iterating till a convergence
criterion on the l2-norm of the residual is not satisfied. This
formulation does not come with convergence guarantees,
however, the solver has empirically proven to be reliable,
as shown in Fig. 3. The reader may refer to the full paper
[9] for a more complete description of the overall method.

III. RESULT

The performance of our algorithm is analyzed using two
different systems: a quadruped robot and a quadruped ma-
nipulator, where the latter includes a manipulator mounted
on top of the robot’s trunk. For the first system, we divide
it into two parts: front and back. Each subsystem includes
a floating base and only the decision variables related to
their specific joints, we can then solve two problems with
37 decision variables in parallel instead of one with 61.

Fig. 2. Relative frequencies for the occurrence of the solution time of the
receding horizon problem recorded over one hundred simulations. In blue
is our distributed implementation while in orange is the centralized one. On
the left, the solution refers to the quadruped robot model while on the right
plot the quadruped plus the arm.
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Fig. 3. The two plots on the left show the trend of the l2 norm of
the residuals along the iteration of our algorithm. On top is the residual
for the quadruped with no arm, while on the bottom are the residuals for
the quadruped manipulator. The right side plots show the time plot of the
residual norm while the robot is trotting in simulation. Again, the top plot
is for the robot with no arm, and the bottom one is for the quadruped
manipulator.

For the quadruped manipulator, we add a third subsystem of
only 31 decision variables per stage in parallel that considers
only the arm and its floating base instead of the full system
with 79. This formulation accelerates the local OCP solution,
as demonstrated in Fig. 2. Our distributed approach runs
two times faster than the centralized one for the quadruped
and four times faster for the quadruped manipulator. We
empirically analyze the convergence properties and stability
of our algorithm by examining the l2 norm of the residual,
since this metric provides insight into the quality of the
consensus achieved. Fig. 3 shows that the residual converges
in a few iterations of our algorithm to values that correspond
to a position error at the end of the prediction in the orders
of millimeters. Fig. 3 also displays the trend of the residual
when the optimization is used in a receding horizon fashion
to control the robot. Further results are presented in the full
paper [9].

IV. CONCLUSION

In this work, we proposed a novel approach to accel-
erate MPC for legged robots by dividing the locomotion
optimization problem into smaller, parallelizable subsystems.
Utilizing a consensus ADMM implementation, we signifi-
cantly improved the computational efficiency while ensur-
ing coherence among parallel optimizations. Our method
enables seamless integration of additional limbs, such as
articulated arms, without compromising solving time, mak-
ing the optimization easily scalable. We compared to a
centralized whole-body MPC implementations, showcasing
reduced computational time. Future work includes hardware
validation, integration of other nonlinear solvers, and exten-
sion to other robot morphologies, e.g. humanoid robots.
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[4] C. Mastalli, S. Chhatoi, T. Corbéres, S. Tonneau, and S. Vijayakumar,
“Inverse-dynamics mpc via nullspace resolution,” IEEE Transactions
on Robotics, vol. 39, no. 4, pp. 3222–3241, 2023.

[5] E. Dantec, M. Naveau, P. Fernbach, N. Villa, G. Saurel, O. Stasse,
M. Taix, and N. Mansard, “Whole-body model predictive control for
biped locomotion on a torque-controlled humanoid robot,” in 2022
IEEE-RAS 21st International Conference on Humanoid Robots (Hu-
manoids), 2022, pp. 638–644.

[6] W.-L. Ma, N. Csomay-Shanklin, S. Kolathaya, K. A. Hamed, and
A. D. Ames, “Coupled control lyapunov functions for interconnected
systems, with application to quadrupedal locomotion,” IEEE Robotics
and Automation Letters, vol. 6, no. 2, pp. 3761–3768, 2021.

[7] V. R. Kamidi, J. Kim, R. T. Fawcett, A. D. Ames, and K. Akbari Hamed,
“Distributed quadratic programming-based nonlinear controllers for
periodic gaits on legged robots,” IEEE Control Systems Letters, vol. 6,
pp. 2509–2514, 2022.

[8] S. Gros, M. Zanon, R. Quirynen, A. Bemporad, and M. Diehl, “From
linear to nonlinear mpc: bridging the gap via the real-time iteration,”
International Journal of Control, vol. 93, no. 1, pp. 62–80, 2020.

[9] L. Amatucci, G. Turrisi, A. Bratta, V. Barasuol, and C. Semini, “Accel-
erating model predictive control for legged robots through distributed
optimization,” https://arxiv.org/abs/2403.11742, 2024.

https://github.com/leggedrobotics/ocs2
https://github.com/leggedrobotics/ocs2
https://arxiv.org/abs/2403.11742

	MOTIVATION
	Distibuted Whole-body MPC
	Result
	Conclusion
	References

