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Abstract— This work presents advancements in nonlinear
model predictive control (NMPC) for the telescopic-wheeled-
legged robot, Tachyon 3. Our NMPC is based on the full-
centroidal NMPC formulation to accurately capture the com-
plex constraints of Tachyon 3. Furthermore, we introduce a
stochastic NMPC to ensure safety-related constraints even in
the presence of contact uncertainties. The proposed NMPC is
implemented with a real-time CBF-QP controller to ensure
strict safety and an internal state integrator to adapt the NMPC
with actuators that employ high-gain position control. The
effectiveness of our NMPC is demonstrated through hardware
experiments with limited on-board computation.

I. INTRODUCTION

Wheeled-legged robots are promising robotic platforms
that amalgamate the strengths of both mobile ground robots
and legged robots: energy efficiency and terrain traversability
[1], [2], [3]. In the same sprit, but to further enhance the
hardware capabilities, we have developed a six-telescopic-
wheeled-legged robot named Tachyon 312, which is depicted
in Figs. 1 and 2. Each leg of Tachyon 3 comprises a
revolute joint at the hip, a telescopic joint at the knee, and a
driven/passive wheel at the tip. Remarkably, the knee joint is
designed to support the entire mass of the robot without any
energy consumption at a specific joint posture. Furthermore,
its center of mass (COM) is by design positioned much lower
than that of typical legged robots, potentially minimizing
damage from accidents.

Despite the aforementioned advantages, wheeled-legged
robots generally face challenges in motion planning and
control due to complexities such as additional degrees of
freedom (DOF) and non-holonomic constraints from the
wheels [1]. Furthermore, the novel hardware configuration
of Tachyon 3 introduces the following distinctive features:

• Each foot of Tachyon 3 has only two degrees of freedom
(DOF) relative to the body (x and z directions), whereas
typical legged robots have more than three DOF.

• The joint ranges of Tachyon 3 are severely limited (e.g.,
50 deg in middle and hip joints and 90 deg in the other
hip joints) to prevent self-collisions, while typical robots
possess larger joint ranges (e.g., 180 deg).

• Knee joints are designed to operate near their positional
limits to maintain a lower COM, in contrast to typical
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Fig. 1: Perceptive locomotion of Tachyon 3 utilizing the
proposed nonlinear predictive control

quadruped robots, which are designed with sufficient
joint margins in their nominal configurations.

• Each joint of Tachyon 3 is governed by high-gain posi-
tion control, as opposed to the torque control commonly
used in legged robots.

In this study, to achieve versatile locomotion under the
aforementioned hardware specifications, we have developed
a nonlinear model predictive control (NMPC) framework
for Tachyon 3. Our NMPC is based on the full-centroidal
NMPC formulation [4], [5], [6], [7] to comprehensively
address a variety of constraints of Tachyon 3 [7]. To augment
safety such as collision avoidance even in the presence
of contact uncertainties, we have implemented stochastic
NMPC using Saltation matrices [8]. We further ensure safety
by hierarchically integrating NMPC with the real-time CBF-
QP controller [9]. Additionally, to adapt NMPC for Tachyon
3, whose joints utilize high-gain position control, we propose
the incorporation of an internal state integrator for state
feedback within the NMPC to prevent oscillations in the
resultant joint position commands [7]. We have implemented
our NMPC on the onboard computer of Tachyon 3 and
demonstrated its practical feasibility through hardware ex-
periments.

II. NONLINEAR MODEL PREDICTIVE CONTROL
FOR TACHYON 3

A. Full-Centroidal NMPC

Tachyon 3 is modeled utilizing the full-kinematics and
centroidal dynamics model, akin to [4], which is termed a
full-centroidal model. The full-kinematics encapsulates the
precise constraints, while the centroidal dynamics articu-
lates the accurate dynamics for position-controlled robots
[10]. The precise constraint evaluation is particularly pivotal
for Tachyon 3, which possesses severe joint range limits,
limited foot-wise DOF, and non-holonomic wheel contact
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Tachyon3 の特徴と非線形MPCでのモデル化指針
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Fig. 2: Tachyon 3 consists of 16 active joints
including 6 prismatic joints, 6 hip joints and
4 drive wheels, and additional two passive
omni wheels.
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Fig. 3: Control pipeline of Tachyon 3 including NMPC

constraints. We imposed joint position, velocity, and torque
limits, friction cone, and foot placement constraints as in-
equality constraints. Additionally, we incorporated collision
avoidance constraints between Tachyon 3’s feet and the
environment, modeled by a finite number of cuboids.

B. Stochastic NMPC for Contact Uncertainties
Exteroceptive sensors such as RGB-D cameras or LiDAR

inevitably encompass perception uncertainties due to factors
such as sensor noises, limited resolution, occlusions, etc. This
poses a challenge for NMPC that is consistently based on
environment perception. For instance, if the estimated terrain
height is greater than the actual height, a swinging foot may
fail to establish contact, leading to the robot’s instability and
potential falls. To mitigate this issue, in [8], we have de-
veloped a zero-order stochastic NMPC [11], [12], [13], [14]
using Saltation Matrices [15] and output-feedback stochastic
NMPC methodology [16]. With the method, the constraint
margins can be adaptively updated online according to the
predicted motions, as benchmarked in [8].

C. Control Pipleine and Software Implementation
Fig. 3 illustrates the overall pipeline of Tachyon 3.

Tachyon 3 is equipped with two on-board PCs: a perception
PC and a control PC. The perception PC is utilized for
environment perception (e.g., extracting terrain surfaces and
obstacles) based on exteroceptive sensors such as LiDAR.
The control PC is employed for motion planning and control
based on the proprioceptive sensors and the environment
information extracted from the perception pipeline. The main
thread (real-time thread) of the control PC runs at 1 kHz and
includes the contact planner, CBF-QP [9], internal state inte-
grator, and state estimator. NMPC is implemented on another
thread of the control PC. The NMPC thread asynchronously
receives state and contact plans from the real-time thread
and dispatches the optimal trajectory to the real-time thread.
The CBF-QP guarantees real-time safety whereas the internal
state integrator enables a NMPC application to a high-gain
position controlled robot without joint oscillations [7]. The
implementation of NMPC optimization is similar to [17],
e.g., internally using efficient software such as [18], [19].

III. EXPERIMENTS
To validate the practical feasibility of the proposed

method, we conducted hardware experiments on the per-
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Fig. 4: Time histories of the base linear velocity and joint
positions over the hardware experiment. RF and RR legs
behaved almost the same as LF and LR legs. The dotted
gray lines show the joint position limits.

ceptive locomotion of Tachyon 3. The horizon length was
set to 1.5 s and the discretization time step was set to 0.02
s. We have applied the proposed stochastic NMPC. Figs. 1
and 4 display snapshots and plots of Tachyon 3’s perceptive
locomotion using the proposed stochastic NMPC. Tachyon
3 successfully ascended and descended a series of two steps
via the proposed stochastic NMPC, even when joints moved
close to its boundaries as we can see from Fig. 4. The average
computational time of the stochastic NMPC was 29 ms while
that of the nominal NMPC (i.e., NMPC without covariance
propagation) was 26 ms measured on the on-board PC (CPU:
Intel(R) Core(TM) i7-8850 H CPU @ 2.606 GHz).

IV. CONCLUSION

In this study, we have presented NMPC for our wheeled-
legged robot Tachyon 3. It effectively achieved perceptive
locomotion online even with limited on-board computation.
Our future work is to explore the capabilities of the proposed
NMPC in a wider variety of settings, such as narrow spaces,
cluttered environments, and curved surfaces.
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